湖北汽车工业学院 2015 年硕士研究生入学考试试题

考试科目: 801 机械原理 (B卷)

(答案必须写在答题纸上,写在其他地方无效)

—、	填空题	(每空1	分.	共10	分)

1、从效率的观点来看,机械的自锁条件是______;对于反行程自锁的机构,其正行程的机械效率一般小于_____。
2、凸轮机构推杆运动规律的选择原则为:______;_____;_____。

3、槽轮机构是由____、___、___组成。对于原动件转一圈,槽轮只运动一次的槽轮机构来说,槽轮的槽数应不少于_____;机构的运动

系数总小于____。

二、(20分)

在图 1 中,设要求四杆机构的三组对应位置分别为: $\alpha_1=35^0$, $\phi_1=50^0$, $\alpha_2=80^0$, $\phi_2=75^0$, $\alpha_3=125^0$, $\phi_3=105^0$ 。已知机架 AD 的长度为 60mm。 试用图解法设计此四杆机构。(取连架杆 AB 长为 30mm)

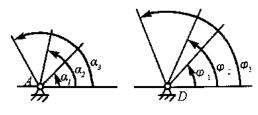


图 1

三、(20分)

1、试计算图 2 所示机构的自由度(若有复合铰链、局部自由度和虚约束,必须明确指出)。

- 2、判断图 2 所示机构的运动是否确定(标有箭头的构件为原动件)。
- 3、若图 2 所示机构的运动是确定的,请进行杆组分析,并显示出拆分过程, 指出各级杆组的级别、数目及机构的级别。

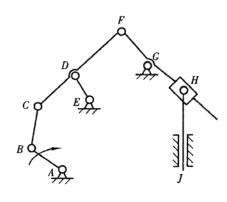
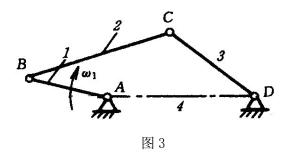



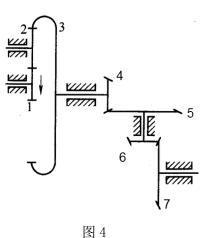
图 2

四、(20分)

在图 3 的曲柄摇杆机构示意图中,已知曲柄 AB 与机架 AC 的夹角为135°, $l_{AB}=0.1$ m, $l_{BC}=0.25m$, $l_{CD}=0.2m$, $l_{AD}=0.3m$, $\omega_1=150\,\mathrm{rad/s}$ (为常量):

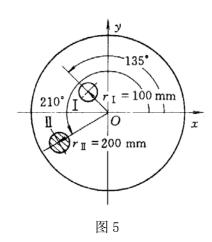
- 1、以长度比例尺 $\mu_l = 0.005 \, \text{m/mm}$ 作出机构运动简图。
- 2、以速度比例尺 $\mu_v = 0.5$ (m/s)/mm作其速度图, 求 C 点的速度 v_c 的大小。
- 3、以加速度比例尺 $\mu_a=75\,(\mathrm{m/s^2})/\mathrm{mm}$ 作其加速度图,求 C 点的加速度 a_c 的大小。

五、(20分)


某直齿圆柱齿轮传动的小齿轮已丢失。但已知与之相配的大齿轮为标准齿

轮,其齿数 $Z_2=52$,齿顶圆直径 $d_{a2}=135mm$,标准安装中心距a=112.5mm。试求丢失的小齿轮的齿数 Z_1 ,模数m,分度圆直径 d_1 ,齿顶圆直径 d_{a1} ,齿根圆直径 d_{f1} 。

六、(20分)


图 4 轮系中,已知 Z_1 =20, Z_2 = 30, Z_3 = 100, Z_4 = 25, Z_5 = 50, Z_6 = 18, Z_7 = 36, 齿轮 1 的转速 n_1 = 1000 r/min。

- 1、指出该轮系的类型。
- 2、求齿轮 7 转速 n_7 的大小。

七、(20分)

图 5 为一钢制圆盘,盘厚b = 50mm,位置 I 处有一直径 ϕ = 50mm的通孔,位置 II 处是一质量 m_2 = 0.5Kg的重块。为了使圆盘平衡,在圆盘上r = 200mm 处制一通孔。试用解析法求此孔的直径与位置。(钢的密度 γ = 7.8 g/cm^3)

八、(20分)

图 6 为作用在多缸发动机曲柄上的等效驱动力矩 M_{ed} 和等效阻力矩 M_{er} 的变化曲线。其等效阻力矩 M_{er} 等于常数,其等效驱动力矩 M_{ed} 曲线与等效阻力矩 M_{er} 曲线围成的面积顺次为+580,-320,+390,-520,+190,-390,+260 和 $-190mm^2$ 。该图比例尺 $\mu_M=100~N\cdot m/mm$, $\mu_\emptyset=0.01ran/mm$ 。

设曲柄平均转速为 $\omega_m = 4\pi/s$,要求 δ 在 0.06 范围内,并不计其余构件的转动惯量时,试求:

- 1、最大盈亏功 ΔW_{max} 。
- 2、装在该曲柄上的飞轮转动惯量JF。

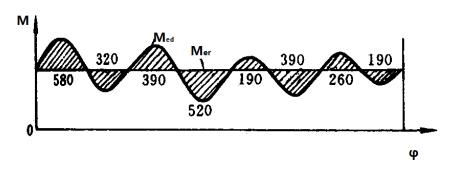


图 6